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Abstract

The behavior of vortices induced by a pair of side-by-side square cylinders in an oscillating flow is investigated using

an in-house numerical model. The study is carried out for various Keulegan–Carpenter numbers, Reynolds numbers,

and cylinder gap spacings. For an oscillating flow past a pair of side-by-side cylinders, the gap ratio plays a vital role in

the flow pattern. A jet-like structure is observed when fluid flows through the gap. Moreover, the gap promotes the

earlier appearance of asymmetric vortex shedding. In-line force and lift force coefficients of two square cylinders are

analyzed using spectral analysis. An autocorrelation function is used to determine the relation between flow patterns

around two cylinders. These results demonstrate the transition of the flow field from the periodic state to the chaotic

state.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow behind a bluff body is characterized by the fundamental flow mechanism of vortex formation. Excellent reviews

on flow past a circular cylinder have been given by Zdravkovich (1997) and Williamson (1996). The interaction of an

oscillating flow with a square cylinder also continues to receive considerable attention, and has practical importance, for

example to the loading on a submerged structure in the near-shore region. In such cases, the oscillating flow is induced

by a progressive wave train, and it is common for the submerged structure to be composed of an array of cylinders,

rather than an isolated cylinder.

A past study concerned with an oscillating flow interacting with a single circular cylinder was conducted by

Williamson (1985). Undertaking a series of finely controlled experiments, Williamson found that no vortex shedding

occurred for Keulegan–Carpenter (KC) number less than 7. Vortex shedding commenced for KC higher than 7. A pair
e front matter & 2010 Elsevier Ltd. All rights reserved.

uidstructs.2010.03.002

ing author. Tel.: þ886 2 27376496; fax: þ886 2 27376460.

ess: mjchern@mail.ntust.edu.tw (M.-J. Chern).

ess: Kalasalinggam University, Tamil Nadu 626 190, India.

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2010.03.002
mailto:mjchern@mail.ntust.edu.tw


ARTICLE IN PRESS

Nomenclature

B length of a square cylinder, m

CD drag coefficient (¼ 2D=ðrU2
mBÞ)

CF in-line force coefficient (¼ 2D=ðrU2
mBÞ)

CL in-line force coefficient (¼ 2D=ðrU2
mBÞ)

D drag, N

G dimensional gap between two square

cylinders, m

g* nondimensional gap between two square

cylinders (=G/B)

KC Keulegan–Carpenter number (=UmT0/B)

L lift, N

P nondimensional pressure

Re Reynolds number (=UmB/n)
St Strouhal number

T nondimensional time

T* period of an oscillating flow, s

t time, s

Um amplitude of velocity variation, m s�1

U nondimensional velocity vector

u velocity component in the x-direction, m s�1

v velocity component in the y-direction, m s�1

Greek symbols

n kinematic viscosity of working fluids, m s�2

o angular frequency, s�1

Superscripts

D downstream cylinder

U upstream cylinder

Subscripts

i initial time

f final time
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of symmetric vortices was shed from a circular cylinder for 7oKCo15. The number of pairs of detached vortices was

proportional to the KC number. Above a critical value of KC, the vortex shedding became asymmetric. Subsequently,

Williamson (1985) studied cases involving a pair of circular cylinders and various other arrangements. Time histories of

drag and lift coefficient were obtained, and the anti-phase and in-phase modes of vortex shedding observed. Obasaju

et al. (1988) focused on the relationship between KC number and the number of vortices shed. They found the number

of vortices shed remained the same until a certain threshold value of KC was reached, above which the number of

vortices shed continued to increase. Sumer and Fredsoe (1997) summarized Williamson’s (1985) and Sarpkaya’s (1986)

results and classified flow patterns according to the behavior of vortex shedding. The first phase comprised no

separation in creeping flow for KCo1.1. The second phase involved separation resulting in Honji (1981) vortices for

1.1oKCo1.6. The third phase was characterized by a pair of vortices for 1.6oKCo4.

Yang et al. (2005) reported numerical simulations of flow past an oscillating rectangular cylinder in a channel, and

found that the vortex shedding frequency gradually changed to match the cylinder oscillating frequency. Testik et al.

(2005) studied the steady and oscillating flow of a single horizontal bottom cylinder, and reported that the near wake

was dominated by large vortices of sizes comparable to the size of the cylinder. Zhou et al. (2000) obtained experimental

results for two and three parallel circular cylinders, focusing on momentum, as well as heat transfer, in the wake region.

They found that the heat flux gradient did not approach zero near the centerlines of simple wakes, which caused a

significant drop in the turbulent Prandtl number.

Bearman et al. (1984) used flow visualization experiments to observe the oscillating flow past a square cylinder.

They investigated the effect of incident angle of the oscillating flow and the effect of rounding the corners of the

cylinder on the resultant force exerted on the cylinder. They found that round corners affected the drag coefficient

of the square cylinder in an oscillating flow more noticeably than in a uniform flow. Zheng and Dalton (1999)

employed a numerical model based on a finite difference method to simulate an oscillating flow interacting with a

square cylinder and a diamond cylinder within the following ranges: 200oReo1000 and 1oKCo5. They determined

lift and in-line force coefficients, and identified irregular waveforms in time histories of the in-line force coefficients,

which appeared when vortex shedding became asymmetric and chaotic due to nonlinear flow dynamics. They

also discussed the effect of round corners on the force coefficients, and noted that these corners have a significant

effect on an oscillating flow. Chern et al. (2007) performed numerical simulations to observe the interaction of

oscillatory flow with a single square cylinder at moderate Reynolds and KC numbers. Spectral analysis of the in-line

force coefficients was utilized to show the route of the flow system from order to chaos. Recently, Peng (2004) studied

vortex shedding behind a pair of square cylinders immersed in uniform upstream flow using flow visualization and

numerical simulation. He observed in-phase and anti-phase vortex shedding modes depending on Reynolds number and

gap ratio between the cylinders. He found that the in-phase vortex shedding was not spatially stable, unlike anti-phase

vortex shedding.

The present study examines the interaction of an oscillating fluid flow with a pair of side-by-side square cylinders. An

established numerical model is utilized to simulate the flow features in the vicinity of the two cylinders, and determine

the time histories of the in-line and lift coefficients. Phase diagrams of lift and in-line force coefficients are presented that

demonstrate the route of vortex systems around cylinders from order to chaos.
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2. Mathematical formulae and numerical model

We consider the oscillating flow of an incompressible fluid in two dimensions. As indicated in Fig. 1, two square

cylinders, each of size B, are located at the middle of the domain with gap G between them. The oscillating flow

condition is imposed at the four open boundaries as

u¼Um sinðotÞ; ð1Þ

where u is the time-dependent flow velocity (in the x-direction), Um the magnitude of the imposed oscillatory

flow velocity, o the angular frequency of the oscillating flow, and t is time. No-slip boundary conditions are

imposed at the solid boundaries of cylinders. The continuity (mass conservation) equation and Navier–Stokes

(momentum conservation) equations are

r �U¼ 0; ð2Þ

and

@U

@t
þ r � ðUUÞ ¼�rPþ

1

Re
r2U; ð3Þ

where U and P are nondimensional velocity and pressure, respectively. The amplitude of incident velocity Um and the

length B of the side of the square cylinder are used as the characteristic velocity and length, respectively. Re is the

Reynolds number given by UmB/n, where n is the kinematic viscosity of the fluid.

The finite volume method is employed to discretize Eqs. (2) and (3). The 4th-order Adams–Bashforth scheme is used for the

temporal derivative. The third-order QUICK scheme proposed by Leonard (1979) is employed for the advective derivative. To

solve the pressure field, the SOLA algorithm is implemented. Although Zheng and Dalton (1999) have discussed the treatment

of sharp corners, where the solution is discontinuous due to a singularity, no special treatment has been given in more recent

studies (Yang et al., 2005; Peng, 2004; Bhattacharyya and Maiti, 2004) of flow past sharp corners. In the more recent studies,

staggered grids were adopted to eliminate computational nodes at corner points. Hence, a staggered grid arrangement is used to

simulate the solution domain in the present study. There is no node to determine velocity or pressure at corner points.

Zheng and Dalton (1999) have studied the effect of the computational domain and grid independence for the

oscillating flow interacting with a square cylinder. They utilized a 20B� 20B square domain for their numerical model,

and employed various uniform meshes, including 65� 65, 129� 129, and 257� 257 to verify the grid independence of

their model. The pressure coefficient was determined using various meshes. Consequently, results given by the meshes

129� 129 and 257� 257 were very close. In the present study, 105� 105, 211� 211, and 251� 251 uniform meshes were

utilized to investigate the influence of the grid in cases with a single square cylinder. As can be seen from Table 1, the

time-averaged in-line force coefficients, CF, given by 211� 211 and 251� 251 are very similar. Following Zheng and

Dalton (1999) and also noting the results in Table 1, the 251� 251 mesh was therefore adopted in the present study.

Furthermore, we used 21B� 21B, 21B� 25 B, 25B� 25B, and 30B� 30B meshes to explore their effects for an
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Fig. 1. Schematic diagram of the oscillating flow and square cylinders.
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oscillating flow interacting with a single square cylinder. The predicted time-averaged in-line force coefficients CF given

by these meshes were very close. Thus, 23B(22BþG) is adopted as the computational domain in which there is no vortex

shedding in the flow field, where G is the gap between cylinders. For cases with vortex shedding, the 23B(45BþG)
Table 2

Comparisons of obtained time-averaged CD, amplitude of CL, and St with available studies for a uniform flow past a square cylinder.

Re=100 Re=200

CD CL St CD CL St

Present study 1.61 70.42 0.13 1.62 70.60 0.145

Okajima et al. N/A 70.5 0.141 N/A 71.3 0.142

Davis et al. 1.66 70.36 0.164 1.79 70.38 0.179

Franke et al. 1.61 70.27 0.154 1.60 70.62 0.157

Saha et al. 1.51 N/A 0.159 1.67 N/A 0.163

Table 1

Comparison of time-averaged in-line force coefficient CF, for an oscillating flow interacting with a single cylinder. Re=213 and

KC=1.

Mesh size Present study Zheng and Dalton (1999)

(numerical result)

Bearman et al. (1984)

(experimental result)

105� 105 38.685 33.128 27.409

211� 211 33.343

251� 251 33.398

T=T*

1
4 T*T=

1
2 T*T=

3
4 T*T=

Fig. 2. Vorticity contours at the 10th period; g*=2, Re=300, and KC=5.
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Fig. 3. Vorticity contours at the 10th period; g*=2, Re=300, and KC=7.
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Fig. 4. Vorticity contours at the 10th period; g*=2, Re=300, and KC=15.
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Fig. 5. Vorticity contours at the 10th period; g*=1, Re=300, and KC=7.
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Fig. 6. Vorticity contours at the 10th period; g*=0.5, Re=300, and KC=7.
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computational domain was used to ensure that no vortex passes through any boundary. The present results are in good

agreement with those of Zheng and Dalton (1999); the difference in time-averaged CF (see Table 1) is only 0.8%.

The numerical model was executed on a Linux-based cluster containing eight nodes, based on Advanced Micro

Devices (AMD) central process units.
2.1. Validation of proposed numerical model

The numerical model was validated for uniform flow past a square cylinder. This benchmark case has been studied by

Okajima et al. (1992), Davis et al. (1984), Franke et al. (1990), and Saha et al. (2000). Relevant physical coefficients,

including the time-averaged drag coefficient (CD), the amplitude of lift coefficient (CL), and Strouhal number (St), were

used to verify the proposed model. Two flow fields at Reynolds numbers (Re) 100 and 200 were simulated. The results

listed in Table 2 show that acceptable agreement has been obtained between the present study and previous simulations.

The second validation test comprised the interaction of an oscillating flow with a single square cylinder using various meshes

at Re=213 and KC=1. Table 1 lists the resultant time-averaged in-line force coefficient CF obtained using the present model

and by Zheng and Dalton (1999) and Bearman et al. (1984). It is found that the time-averaged CF given by the established

model is independent of meshes denser than 211� 211. Moreover, the present result is within 1% of that of Zheng and Dalton

(1999). However, the present result was 21% different from that reported by Bearman et al. (1984).

Taken overall, the validation results indicate that the present model is suitable for investigating an oscillating flow

interacting with a pair of square cylinders.
Fig. 7. Time histories of CF at g*=0.5, Re=300, KC=1, 7, and 15.
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Fig. 8. Time histories of CL at g*=0.5, Re=300, KC=1, 7, and 15.
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3. Results and discussion

The three main nondimensional parameters are the Reynolds number (Re), Keulegan–Carpenter number (KC), and

the dimensionless gap (g*) between the two cylinders. Here, we define the Keulegan–Carpenter number as

KC¼
UmT n

B
; ð4Þ

where T* is the period of an oscillating fluid flow. The ranges of Re, KC, and g* considered in the present study are

200–500, 1–15, and 0.5–2.0, respectively.

3.1. Flow patterns

Flow variations of an oscillatory flow interacting with a single square cylinder have been reported by Zheng and

Dalton (1999) and Chern et al. (2007). Vortex systems adjacent to two square cylinders are independent, provided the

gap between the cylinders is large. In other words, each vortex system adjacent to a cylinder behaves independently, like

that of an oscillatory flow interacting with a single cylinder. However, when the gap is reduced, the vortex systems will

begin to interact with each other. The present work will determine the influence of the gap on those vortex systems, by

examining the effect of different gap spacings.

First, consider the results for a dimensionless gap, g*=2. No vortex appears when KC is less than 3. A pair of

symmetric vortices appears when KC is larger than 3. Fig. 2 shows the behavior of symmetric vortex pairs at KC=5.

The pairs develop at the lower sides of cylinders for a half period. They form first at the first quarter period and

subsequently fade. When the flow changes direction at the other half period, two new pairs of symmetric vortices are

found at the other side of the cylinders. Meanwhile, the vortices do not shed from the cylinders even at the 10th period.

Pairs of symmetric vortices can be found when KCo7 (see Fig. 3). As KC is increased, the symmetry in the vortex pairs

cannot be retained. As a result, the vortex pairs are asymmetric but are attached to the cylinders. For KC410,
Fig. 9. Time histories of CF at g*=2, Re=200 and 500, KC=7.
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asymmetric vortex shedding occurs from both cylinders. When these asymmetric vortices are shed from the cylinders,

they interact with other residual vortices. Fig. 4 shows asymmetric vortex shedding from the cylinders for KC=15.

Second, consider flows with g*=1. When the gap between two square cylinders is reduced, the flow field changes and the

gap flow has a significant effect on the vortices. For KCo3, vortices do not develop. For KC43, a pair of symmetric

vortices grows adjacent to the cylinders. Fig. 5 shows the vorticity contours at KC=7. Due to the interaction between

vortices of opposite sign at the small gap, the vortices adjacent to the gap are stretched toward the flow direction as shown at

T ¼ 3
8
T n and 4

8
T n . The effect is the same as in Fig. 3. When the flow changes direction, vortices beyond the gap are dissipated.

However, vortices adjacent to the gap are not dissipated completely at T ¼ 5
8
T n . This is different from the previous case for

g*=2. The vortices do not vanish. When the flow changes direction again, the vortices are pushed downstream by the gap

flow. After several cycles, the vortices migrate further from the cylinders and become damped. In general, when g* is 1, the

vortex pair behind each square cylinder is different from that of a single cylinder.

Third, consider flows with g*=0.5. No vortex is observed in the flow field at KCo3. As KC increases to 7, a pair of

asymmetric vortices is generated in the vicinity of the pair of square cylinders. Fig. 6 shows the situation at the 10th period

when KC is 7. Due to the strong gap flow, the vortices near the gap appear when the oscillatory flow is decelerated at

T ¼ 4
8
T n . Subsequently, the vortices near the gap are expelled. These two vortices become weak while traveling far away

from the cylinders in later cycles. Two vortices away from the gap are created that then disappear as the oscillatory flow is

accelerated and decelerated at T ¼ 1
8

24
8
T n . The temporal and spatial variations of these two vortices are similar to those in

the vicinity of a single cylinder, due to the narrow gap. These vortices are not adjacent to the cylinders when KC increases.
3.2. Variation of the resultant force

Time histories of force coefficients are calculated in order to estimate the influence of the oscillating fluid flow on the

square cylinders. The resultant force exerted on the square cylinder is determined by the numerically predicted pressure

and shear stress distributions. The components of the resultant force parallel to and normal to the flow direction are
Fig. 10. Time histories of CL at g*=2, Re=200 and 500, KC=7.
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called the in-line force D and lift force L, respectively. In order to analyze the interaction of vortices quantitatively, the

forces exerted on the square cylinders are computed. Fig. 7(a)–(c) presents time histories of in-line force coefficients CF

at g*=0.5 for the upstream cylinder, CU
F and the downstream cylinder, CD

F . When KCo5 (see Fig. 7(a)), variations of

CF of two cylinders behave sinusoidally and are almost the same. Moreover, the waveforms are very close and small

undulations form at KC=7 (Fig. 7(b)). These results show that nonlinearity grows in the resultant forces.

Subsequently, the irregularity becomes more obvious at KC410 (see Fig. 7(c)). Meanwhile, the waveforms gradually

separate from each other, due to the formation of asymmetric vortices at higher KC values. Furthermore, KC increases

when CF is reduced significantly.

Fig. 8(a)–(d) shows the lift coefficient (CL) for g*=0.5 for various KC values. When KC is 1, CL becomes sinusoidal

(Fig. 8(a)), and the upstream and downstream cylinder vortices result in an anti-phase mode. The period as well as

magnitude is reduced when KC is increased. CL is periodic up to KC=7. However when KC is increased to 10 and

when time elapses beyond T=68, an irregularity is found (Fig. 8(c)). This irregularity begins at an earlier stage when

KC is further increased (Fig. 8(d)). The magnitude of CU
L is negative at low KC values and becomes positive when KC is

increased. The behavior reverses for CD
L . Time histories of in-line force and lift coefficients for Re=200 and 500 are

shown in Figs. 9 and 10, respectively, for g*=2 and KC=7. The value of CF is periodic for Re=200. There is no

variation in CF between the upstream cylinder (CU
F ) and downstream cylinder (CD

F ) for different Re values. However,

the signs of the magnitudes of CL are opposite for different Re in Fig. 10.
Fig. 11. Power spectrums of CF for Re=300, g*=0.5, 1, and 2, and KC=1, 5, and 15.
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3.3. Spectral analysis of the resultant force

Time histories of CF for all the cases studied are analyzed using a fast Fourier transform (FFT) technique. Fig. 11

shows the power spectrum of CF at various KC. The single harmonic at KC=1 indicates that the behavior of CF is

periodic. As KC increases, sub-harmonics become excited, as shown in Fig. 11(b) and (c). The second sub-harmonic is

twice the fundamental harmonic. Subsequently, more and more sub-harmonics are excited at increasing KC values.
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Fig. 14. Phase diagrams of CF versus CL. Re=300 and g*=0.5.
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Nonetheless, the fundamental harmonic still dominates CF. When KC is increased to 15, the sub-harmonics are

enhanced and therefore the behavior of CF becomes more irregular, as shown in Fig. 11(c).

Influences of Re, KC, and g* on time-averaged CF are also investigated in this study. It is found that Re does not

affect the time-averaged CF. Fig. 12 shows the dependence of time-averaged CF on g* and KC. The amplitude of CF, in

Fig. 12, is inversely proportional to KC. As g* decreases, CF increases slightly. Variations of time-averaged CF are fitted

to three various curves denoted as lines and formulated as

CF ¼ 29:17KC�7:87 for gn ¼ 0:5; ð5Þ

CF ¼ 33:1KC�8:41 for gn ¼ 1; ð6Þ

CF ¼ 31:8KC�8:61 for gn ¼ 2: ð7Þ

Fig. 13 summarizes the vortex formation related to KC and g*. Symmetric vortices form at KC=7 for all the g*

values considered in this study, and asymmetric vortices form when KC410. The nonlinear phenomenon is shown in

the phase diagram (Fig. 14) of CF versus CL for KC=1 and 15, Re=300, and g*=0.5. The results are shown for the

upstream cylinder as well as the downstream cylinder. Perturbation does not occur at KC=1, and the flow has periodic

behavior, shown in Fig. 14(a) and (b). The pair of symmetric vortices is strongly coupled to each other. However, at

large KC values such as KC=15, perturbation causes a nonlinear chaotic state, shown in Fig. 14(c) and (d). The vortex
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Fig. 15. Time histories of autocorrelation function A(T) at Re=300 and KC=1, 10, and 15.
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systems do not follow the same path as in Fig. 14(a) and (b). In order to determine the level of the relationship between

vortex systems around upstream and downstream cylinders, the autocorrelation function A(T) has been evaluated.

Consider time histories of two functions of time V1(t) and V2(t). The autocorrelation A(T) for these two functions V1(t)

and V2(t) can be determined by the formula

AðTÞ ¼
V1V2

V2
1

; ð8Þ

where

V1V2 ¼ lim
Tf-1

1

Tf�Ti

Z Tf

Ti

V1ðtÞV2ðtÞdt; ð9Þ

in which Ti and Tf refer to the initial time and final time, respectively. Provided V1 is the same as V2, A(T)=1,

corresponding to an in-phase state. Moreover, A(T) becomes �1 when V1 and V2 are equal in magnitude but of

opposite signs. Hence, V1 and V2 are in anti-phase. If V1 is completely unrelated to V2, then A(T) will be zero. In

addition, A(T) varies from �1 to 1 when V1 is partially related to V2. Thus, A(T) can be used to examine the degree of

interaction between the vortex systems that form around two cylinders. The lift coefficient CL is used here to

characterize the vortex systems around two cylinders, such that

AðTÞ ¼
CU

L CD
L

CU2
L

; ð10Þ

where the superscripts U and L refer to upstream and downstream cylinders, respectively. Fig. 15 shows A(T) for

Re=300 and various g* and KC values. Fig. 15(a) shows the time history of A(T) at KC=1. A(T) remains �1 for all

gaps, although it is about �0.9 for g*=2.0. This suggests that the two vortex systems are in anti-phase, as shown in

Fig. 15(a). When KC increases to 10, the vortex systems in the vicinity of the cylinders are in anti-phase (A(T)=�1)
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when g*=1 or 2 and KC=10 as seen in Fig. 15(b). However, if the gap is sufficiently small (e.g. g*=0.5), A(T) is not

�1 all the time. Thus, these vortex systems are not in anti-phase but are partially related. The gap flow also plays a vital

role in altering the anti-phase state. When KC increases to 15, A(T) is not always �1 at the gaps, as can be seen in

Fig. 15(c). Decreasing the gap brings forward the onset of increasing A(T). Also, A(T) is higher at KC=15 than at

KC=1 or 10, and so such vortex systems do not strongly depend on each other any more. A very weak relation exists

between these vortex systems at high KC.
4. Conclusions

Numerical simulations of an oscillating flow interacting with a pair of side-by-side square cylinders have been

performed. Re, KC, and gap between the cylinders (g*) were systematically varied and their influence on the flow

physics was investigated. Reynolds number has less effect on the flow patterns, whereas KC and g* play key roles in

vortex formation. Up to KC=7, a pair of symmetric vortices develops. The vortices remain symmetric until KC=10,

above which the vortices become asymmetric. When g* is increased, additional vortices form in the flow direction. Gap

flow has a major effect on vortex formation. In-line and lift coefficients have been determined, and a correlation

obtained between CF and KC. An FFT analysis of the time history of CF indicates that the fundamental harmonic

dominates the flow. Additional sub-harmonics are identified when KC is increased. The periodic solution turns chaotic

in vortex systems in the vicinity of cylinders at increasing KC. The chaotic state occurs earlier for smaller cylinder gap

ratio. From an analysis of the autocorrelation function A(T) it appears that the vortex systems around two cylinders are

strongly interdependent and are in an anti-phase state at low KC (A(T)=�1). Nevertheless, A(T) increases with

increasing KC because the two vortex systems become less dependent on each other.
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